Functional role of the NH2-terminal cytoplasmic domain of a mammalian A- type K channel
نویسندگان
چکیده
It has been shown for a Shaker channel (H-4) that its NH2-terminal cytoplasmic domain may form a "ball and chain" structure, with the "chain" tethering the "ball" to the channel while the "ball" capable of binding to the channel in its open state and causing inactivation. Equivalent structures have not been identified in mammalian Shaker homologues. We studied the functional role of the NH2-terminal region of a fast-inactivating mammalian K channel, RHK1 (Kv1.4), by deleting different domains in this region and examining the resultant changes in channel properties at whole cell and single channel levels. Deleting the NH2-terminal hydrophobic domain (domain A) or the subsequent positive charges (domain I) from RHK1 greatly slowed the decay of whole cell currents, suggesting the existence of a ball-like structure in RHK1 similar to that in the Shaker channel. The function of the ball appeared to be abolished by deleting domain A, while modified but maintained by deleting domain I. In the latter case, the data suggest that the positive charges needed for the function of the ball can be replaced by amino acids from a following region (domain III) that has a high positive charge density. Deleting multiple domains from the NH2 terminus of RHK1 corresponding to the chain in Shaker H-4 did not induce expected changes in channel properties that might result from a shortening of a chain. A comparison of single channel kinetics of selected mutant channels with those of the wild-type channel indicated that these deletion mutations slowed whole cell currents by prolonging burst durations and by increasing the probability of reopening during depolarization. There were no changes in single channel current amplitude or latency to first opening. In conclusion, our observations indicate that the inactivation mechanism of RHK1 is similar to that of Shaker H-4 in that a positively charged cytoplasmic domain is important for such a process. The NH2-terminal domain is not involved in channel activation or ion permeation process.
منابع مشابه
The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .
Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...
متن کاملFunctional and Molecular Characterization of C91S Mutation in the Second Epidermal Growth Factor-like Domain of Factor VII
Background: Coagulation Factor VII is a vitamin K-dependent serine protease which has a pivotal role in the initiation of the coagulation cascade. The congenital Factor VII deficiency is a recessive hemorrhagic disorder that occurs due to mutations of F7 gene. In the present study C91S (p.C91S) substitution was detected in a patient with FVII deficiency. This mutation has not b...
متن کاملFunctional interactions of the AF-2 activation domain core region of the human androgen receptor with the amino-terminal domain and with the transcriptional coactivator TIF2 (transcriptional intermediary factor2).
Previous studies in yeast and mammalian cells showed a functional interaction between the amino-terminal domain and the carboxy-terminal, ligand-binding domain (LBD) of the human androgen receptor (AR). In the present study, the AR subdomains involved in this in vivo interaction were determined in more detail. Cotransfection experiments in Chinese hamster ovary (CHO) cells and two-hybrid experi...
متن کاملFunctional Investigation of the Novel BRCA1variant (Glu1661Gly) byComputationalTools andYeastTranscription Activation Assay
Introduction: Mutations in the BRCA1 gene are major risk factors for breast and ovarian cancers. However, the relationship between some BRCA1 mutations and cancer risk remains largely unknown. Cancer risk predictions could be improved by evaluation of the impairment degree in the BRCA1 functions due to a specific mutation. This study aimed to assess the functional effect of a novel variant (Glu...
متن کاملFunctional Investigation of the Novel BRCA1variant (Glu1661Gly) byComputationalTools andYeastTranscription Activation Assay
Introduction: Mutations in the BRCA1 gene are major risk factors for breast and ovarian cancers. However, the relationship between some BRCA1 mutations and cancer risk remains largely unknown. Cancer risk predictions could be improved by evaluation of the impairment degree in the BRCA1 functions due to a specific mutation. This study aimed to assess the functional effect of a novel variant (Glu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 102 شماره
صفحات -
تاریخ انتشار 1993